1.In Excel, calculate the average effect of each process. Did the process change? Did the process average increase or decrease, and by how much? Copy-paste your Excel calculations into your Word Document. 2.In Excel, create the Linear Regression Model. Analyze the data using the regression model y= b0 + b1 x, where y = time to approve and mail a claim (weekly average), x = 0 for the old process, and x = 1 for the new process. Copy-paste the Regression Model into your Word Document. 3.How does this model measure the effect of the process change? 4.How much did the process performance change on average? (Hint: Compare the values of b1 and the average of new process performance minus the average of the performance of the old process.
Last Completed Projects
topic title | academic level | Writer | delivered |
---|
jQuery(document).ready(function($) { var currentPage = 1; // Initialize current page
function reloadLatestPosts() { // Perform AJAX request $.ajax({ url: lpr_ajax.ajax_url, type: 'post', data: { action: 'lpr_get_latest_posts', paged: currentPage // Send current page number to server }, success: function(response) { // Clear existing content of the container $('#lpr-posts-container').empty();
// Append new posts and fade in $('#lpr-posts-container').append(response).hide().fadeIn('slow');
// Increment current page for next pagination currentPage++; }, error: function(xhr, status, error) { console.error('AJAX request error:', error); } }); }
// Initially load latest posts reloadLatestPosts();
// Example of subsequent reloads setInterval(function() { reloadLatestPosts(); }, 7000); // Reload every 7 seconds });